

EFEITO DA PROFUNDIDADE DE SEMEADURA NA EMERGÊNCIA E DISTRIBUIÇÃO LONGITUDINAL DO MILHO (*Zea mays*) EM SISTEMA DE PLANTIO DIRETO

Paulo Henrique Nascimento de Souza⁽¹⁾, Eduardo Freitas Rodrigues⁽¹⁾, Leonardo da Silva Ramos⁽¹⁾, Renan Miranda Viero⁽¹⁾, Jorge Wilson Cortez⁽²⁾

Introdução

Devido à presença da cobertura vegetal e características relacionadas ao adensamento em particular no sistema de plantio direto, o processo de semeadura sofreu várias transformações relacionadas com a adaptação das máquinas e dificuldade na regulagem de profundidades mediante camadas compactadas. Com as mudanças no processo de semeadura, Liu et al. (2004) relataram haver maior correlação na produtividade do milho com a variabilidade de emergência, do que com a distribuição de plantas.

A profundidade no solo em que uma semente é capaz de germinar e produzir são variáveis entre as espécies e diferentes tipos de manejo de solo, apresentando importância ecológica e agronômica (GUIMARÃES et al., 2002). A velocidade de germinação e emergência são aspectos limitantes para qualquer cultura, geralmente uma germinação rápida associada à emergência uniforme, são duas características de grande importância para alcançar altas produtividades de grãos com a cultura do milho, em função da baixa capacidade de compensação de espaços e da alta eficiência de conversão da energia luminosa características da cultura (TOLLENAAR, 1999).

Silva et. al (2002) citam a profundidade de semeadura como o fator que mais influência na emergência e no desenvolvimento vegetativo da cultura do milho, o que, mostra a relativa importância de uma regulagem correta de profundidade para garantir um bom estande de plantas.

Os resultados reportados na bibliografía analisando a influência da profundidade de semeadura no desempenho agronômico do milho são conflitantes. Em estudos com a emergência do milho, Gupta et al. (1988) observaram que existe uma correlação linear positiva

¹Acadêmico de Engenharia Agronômica da Faculdade de Ciências Agrárias, UFGD, Rodovia Dourados/Itahum, km 12 - Dourados, MS. paulo-agronomia34-ufgd@hotmail.com

²Engenheiro Agrônomo, Dr., Professor da Faculdade de Ciências Agrárias, UFGD. Bolsista de Produtividade de Pesquisa do CNPq. jorgecortez@ufgd.edu.br.

entre a profundidade de deposição da semente e o tempo para a emergência das plântulas em condições ambientais de temperaturas favoráveis. Por outro lado, Prado et al. (2001), não encontraram diferenças para a velocidade de emergência em diferentes profundidades de semeadura, em experimento com suplementação hídrica. Yorinori et al. (1996) visualizaram uma relação inversa entre profundidade e velocidade de emergência de milho-pipoca.

O objetivo deste trabalho foi avaliar a relação entre a emergência de plantas e a distribuição longitudinal de plântulas de milho em função da profundidade de semeadura.

Material e Métodos

O trabalho foi conduzido na FAECA – Fazenda Experimental de Ciências Agrárias da Universidade Federal da Grande Dourados (UFGD) no município de Dourados-MS no ano de 2013. O local situa-se em latitude de 22 ° 14 ' S, longitude de 54 ° 59 ' W e altitude de 434 m. O experimento foi implantado em um sistema de Plantio Direto (SPD) em um solo classificado como Latossolo Distroférrico (Embrapa, 2006).

O milho foi semeado utilizando uma semeadora-adubadora pneumática equipada com quatro unidades de semeadura, espaçadas entre si a 0,90 m com disco de 30 furos e 0,5 mm de diâmetro, com as engrenagens 19/28, regulada para distribuir 5,3 sementes por metro, e as engrenagens 17/24 regulada para cair 88 kg ha⁻¹ de adubo 8-20-20 (Ca-S-Zn). O trator utilizado na semeadura foi um Massey Ferguson 292 TDA com sistema de marchas 1, 2 e 3, com A e B, mais simples e reduzida, com pneus dianteiros 14,9-21 e traseiros 18,4-34.

A semeadora-adubadora foi regulada, de modo, que as sementes fossem distribuídas com a profundidade avaliada em cada linha de semeadura, sendo os tratamentos formados por quatro profundidades de semeadura: 3 cm (T1); 5 cm (T2); 7 cm (T3); 9 cm (T4). O delineamento utilizado foi em faixas com 5 repetições distribuídas em 4 fileiras de 30 metros semeadas com o milho, obtendo 20 faixas.

Para as avaliações realizou-se a coleta de dados na área semeada, sendo 5 pontos de coleta, e em cada ponto coletaram-se os dados nas quatro linhas de semeadura, sendo dois metros em cada fileira. A coleta constou do uso de uma trena graduada com a precisão de 0,05 m e pela contagem direta da quantidade de plântulas de milho.

Para determinação do número de dias para emergência (NDE), foram realizadas contagens diárias às 12:00 horas, do número de plantas emergidas, sendo considerada a emergência a partir do momento em que a plântula pode ser vista de um ângulo qualquer a olho nu. A contagem de plantas foi realizada até que houvesse três repetições sucessivas do mesmo número de plântulas nos pontos de coleta de dados, e calculado conforme Edmond & Drapala (1958).

O Índice de Velocidade de Emergência (IVE) foi avaliado por meio de contagens diárias de estande até a estabilização do mesmo. Os valores do IVE foram determinados pela equação (1).

$$IVE = \frac{E_1}{N_1} + \frac{E_2}{N_2} + \dots + \frac{E_n}{N_n}$$
 (1)

Em que, N_1 N_n = número de dias decorridos da semeadura até a respectiva contagem; E_1 E_n = número de plântulas emergidas em cada dia considerado.

O estande de plantas foi calculado considerando a população em dois metros da fileira. A eficiência de semeadura, chamado de índice de emergência, foi definida como a relação entre a quantidade de sementes semeada no campo e a que foi proposta na regulagem. A porcentagem de espaçamentos normais, falhos e duplos foi obtida de acordo com as normas da Abnt (1984) e Kurachi et al. (1989), considerando-se porcentagens de espaçamentos: "duplos" (D): <0,5 vez o Xref., normais" (A): 0,5< Xref.< 1,5, e "falhos" (F): > 1,5 o Xref, em que Xref é o valor do espaçamento de referência.

Os dados foram submetidos a análise de variância e comparação de médias pelo teste de Tukey a 5% de probabilidade.

Resultados e Discussão

O número de dias para emergência das plântulas de milho (Tabela 1), estande de plantas e os índices de eficiência da semeadura mostraram-se influenciados pelas diferentes profundidades de semeadura (Tabela 1). Por outro lado, não houve efeito significativo no índice de velocidade de emergência e nas porcentagens de espaçamentos normais, falhos e duplos em interação com as diferentes profundidades testadas.

Tabela 1. Valores médios de número de dias para emergência (NDE), estande de plantas, índice de velocidade de emergência (IVE), eficiência de semeadura (IE) e variância para espaçamento normal (N), falho (F) e duplo (D).

Profundidad	NDE	Estande	IVE	IE	N	F	D
e	(dias)	(PL m ⁻¹)	(PL dia ⁻¹)	(%)	(%)	(%)	(%)
(cm)						(/0)	
3	12,16 a	4,8 ab	2,3 a	62,0 ab	46,7 a	44,8 a	8,4 a
5	9,30 ab	6,4 a	3,8 a	72,0 a	60,3 a	39,7 a	0,0 a
7	8,32 b	3,6 ab	2,1 a	42,0 ab	24,2 a	60,8 a	15,0 a
9	9,28 ab	2,0 b	1,8 a	34,0 b	35,3 a	64,6 a	0,0 a
C.V. (%)	22,3	60,6	53,9	42,8	64,1	46,8	225,9

Médias seguidas de mesma letra na coluna não diferem entre si no teste Tukey a 5% de probabilidade.

O número de dias para emergência foi maior na profundidade de 3 cm, sendo que, a emergência mais rápida foi na profundidade de 7 cm (Tabela 1). Estes resultados são contrários aos encontrados por Furlani et. al (2001) que no estudo da combinação de profundidade de semeadura na cultura de milho e quatro níveis de compactação do solo, não verificaram influência dos fatores sobre o número médio de dias para emergência de plântulas. No entanto, Pereira e Cruz (2000) ressaltam que a semeadura deve ser mais superficial ao redor de 3 a 5 cm em solos mais pesados, que dificultam a emergência ou quando a temperatura do solo é mais fria.

A diferença entre os dias para emergência e estande das plantas de milho no efeito ocasionado pela variação da profundidade esteve provavelmente associado ao comportamento da temperatura do solo. No subperíodo semeadura-emergência o meristema apical está abaixo da superfície do solo e o efeito da temperatura se torna um fator limitante da taxa de desenvolvimento inicial do milho (STONE et al., 1999; JANOWIAK et al., 2003). Na profundidade de 3 cm a alta temperatura nas camadas superficiais do solo limitou a emergência das plântulas, do mesmo modo, as maiores profundidades associadas a baixas temperaturas reduziram a velocidade de emergência pela redução das reações metabólicas envolvendo a germinação (NASSIF et al.,2000), o que justifica o fato do menor número de dias para emergência ser observado nas profundidades intermediárias testadas (5 e 7 cm).

Alguns outros fatores podem ser associadas a justificativa para a emergência mais rápida e o melhor resultado de estande nas profundidades intermediárias testadas. Napier et. al (1987) observaram em estudos que as semeaduras mais profundas além de dificultar a emergência aumentam o período de susceptibilidade a patógenos, do mesmo modo, semea-

duras rasas facilitam o ataque de predadores ou danos de correntes de irrigação, ou ainda, exposição da radícula causando sua destruição.

O índice de eficiência da semeadura foi maior na camada de 5 cm (72%), ocorrendo uma redução para 34% na semeadura com profundidade de 9 cm, possivelmente a semeadora-adubadora perdeu eficiência nas camadas mais profundas, visto que se tratava de uma área de Sistema de Plantio Direto com compactação maior em altas profundidades, dificultando a semeadura.

Conclusões

O aumento da profundidade de 5 para 9 cm na operação de semeadura influenciou negativamente com a redução de estande e eficiência de semeadura. Na profundidade de 5 centímetros obteve-se o maior estande e melhor eficiência de semeadura.

As classes de espaçamentos entre plantas (normais, falhos e duplos) apresentaram ausência de dependência da profundidade, o que indica regularidade da semeadora na distribuição longitudinal de sementes nas profundidades de 3 a 9 cm.

Referências

ABNT. Projeto de norma 04:015.06-004 - semeadoras de precisão: ensaio de laboratório - método de ensaio. São Paulo, 1984. 26 p.

EDMOND, J. B.; DRAPALA, W. J. The effects of temperature, sand and soil, and acetone on germination of okra seed. **Proceedings of the American Society Horticutural Science**, Alexandria, n. 71, p. 428-434, 1958.

EMBRAPA. **Sistema Brasileiro de Classificação de Solos**. Rio de Janeiro: Embrapa, 2006, 2a ed. 412p.

FURLANI, C. E. A.; LOPES, A.; REZENDE, L. C.; SOUZA E SILVA, S. S; LEITE, M. A. S. Influência da compactação do solo na emergência das plântulas de milho a diferentes profundidades de semeadura. **Engenharia na Agricultura**. Viçosa, v. 9, n.3, p. 147-53. 2001.

GUIMARÃES, S. C.; SOUZA, I. F.; PINHO, E. V. R. V. Emergência de Tridax procumbens em função de profundidade de semeadura, do conteúdo de argila no substrato e da incidência de luz na semente. **Planta Daninha**, v. 20, n. 3, p. 413-419, 2002.

GUPTA, S.C.; SCHENEIDER, E.C.; SWAN, J.B. Planting depth and tillage interactions on corn emergence. Soil. **Science Society of America Journal**, Madison, v.52, n.4, p.1122-27, 1988.

JANOWIAK, F.; LUCK, E.; DÖRFFLING, K. Chilling tolerance of maize seedlings in the field during cold periods in spring is related to chillinginduced increased in abscisic acid level. **Journal of Agronomy and Crop Science**, Berlim, v.189,p.156-161, 2003.

LIU, W.; TOLLENAR, M.; STEWART, G.; DEEN, W. Response of corn grain yield to spatial and temporal variability in emergence. **Crop Science**, Madison, v.44, n.3, p.847-54, 2004.

NAPIER, I. Tecnicas de viveros florestales con referencia especial a centroamerica. Costa Rica, Signa Tepec: Ed. Espemacifor, 1985. 274p.

NASSIF, S.M.L. Germinação de sementes: fatores externos (ambientais) que influenciam na germinação. Disponível em: http://ipef.br/espécies/germinaçãoambiental. Acesso em 11 de setembro de 2013.

PEREIRA, I.A.; CRUZ, J.C. Plantio, espaçamento, densidade, quantidade de sementes. Sistema de produção. Embrapa Milho e Sorgo, 2000. Disponível em: http://sistemasdeproducao.cnptia.embrapa.

br/FontesHTML/Milho/CultivodoMilho/plantespaca.htm. Acesso em: 13 de Setembro de 2013

SILVA, R. P. Efeito das rodas compactadoras submetidas a cargas verticais em profundidades de semeadura nas características agronômicas do milho (Zea mays L.). Jaboticabal 2002. 129p. Tese de Doutorado. Faculdade de Ciências Agrárias e Veterinárias. Universidade Estadual Paulista.

STONE, P.J.; SORENSEN, I.B.; JAMIESON, P.D. Effect of soil temperature on phenology, canopy development, biomass and yield of maize in a cool-temperate climate. **Field Crops Research**, Amsterdam, v.63, p.169-178, 1999.

TOLLENAAR, M.; WU, J. Yield improvement in temperate maize is attributable to greater stress tolerance. **Crop Science**, Madison, v. 39, p.1597-1604, 1999.

YORINORI, N. A.; SADA, S. Y.; PISSAIA, A. Efeito da profundidade de semeadura e do envelhecimento precoce de sementes de milho-pipoca (Zea mays L.) sobre a emergência e vigor de plantas. **Revista do Setor de Ciências Agrárias,** Curitiba, v.15, n.2, p. 173-178, 1996.